A mixture model for quantum dot images of kinesin motor assays.
نویسندگان
چکیده
We introduce a nearly automatic procedure to locate and count the quantum dots in images of kinesin motor assays. Our procedure employs an approximate likelihood estimator based on a two-component mixture model for the image data; the first component has a normal distribution, and the other component is distributed as a normal random variable plus an exponential random variable. The normal component has an unknown variance, which we model as a function of the mean. We use B-splines to estimate the variance function during a training run on a suitable image, and the estimate is used to process subsequent images. Parameter estimates are generated for each image along with estimates of standard errors, and the number of dots in the image is determined using an information criterion and likelihood ratio tests. Realistic simulations show that our procedure is robust and that it leads to accurate estimates, both of parameters and of standard errors.
منابع مشابه
A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers
With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...
متن کاملProcessive movement of single kinesins on crowded microtubules visualized using quantum dots.
Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single qua...
متن کاملTracking individual kinesin motors in living cells using single quantum-dot imaging.
We report a simple method using semiconductor quantum dots (QDs) to track the motion of intracellular proteins with a high sensitivity. We characterized the in vivo motion of individual QD-tagged kinesin motors in living HeLa cells. Single-molecule measurements provided important parameters of the motor, such as its velocity and processivity, as well as an estimate of the force necessary to car...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملMotor transport of self-assembled cargos in crowded environments.
Intracellular transport of cargo particles is performed by multiple motors working in concert. However, the mechanism of motor association to cargos is unknown. It is also unknown how long individual motors stay attached, how many are active, and how multimotor cargos would navigate a densely crowded filament with many other motors. Prior theoretical and experimental biophysical model systems o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2011